3.18.23 \(\int \frac {(d+e x)^{7/2}}{(a^2+2 a b x+b^2 x^2)^{5/2}} \, dx\) [1723]

Optimal. Leaf size=250 \[ -\frac {35 e^3 \sqrt {d+e x}}{64 b^4 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {35 e^2 (d+e x)^{3/2}}{96 b^3 (a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {7 e (d+e x)^{5/2}}{24 b^2 (a+b x)^2 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {(d+e x)^{7/2}}{4 b (a+b x)^3 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {35 e^4 (a+b x) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{64 b^{9/2} \sqrt {b d-a e} \sqrt {a^2+2 a b x+b^2 x^2}} \]

[Out]

-35/96*e^2*(e*x+d)^(3/2)/b^3/(b*x+a)/((b*x+a)^2)^(1/2)-7/24*e*(e*x+d)^(5/2)/b^2/(b*x+a)^2/((b*x+a)^2)^(1/2)-1/
4*(e*x+d)^(7/2)/b/(b*x+a)^3/((b*x+a)^2)^(1/2)-35/64*e^4*(b*x+a)*arctanh(b^(1/2)*(e*x+d)^(1/2)/(-a*e+b*d)^(1/2)
)/b^(9/2)/(-a*e+b*d)^(1/2)/((b*x+a)^2)^(1/2)-35/64*e^3*(e*x+d)^(1/2)/b^4/((b*x+a)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 250, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {660, 43, 65, 214} \begin {gather*} -\frac {7 e (d+e x)^{5/2}}{24 b^2 (a+b x)^2 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {(d+e x)^{7/2}}{4 b (a+b x)^3 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {35 e^4 (a+b x) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{64 b^{9/2} \sqrt {a^2+2 a b x+b^2 x^2} \sqrt {b d-a e}}-\frac {35 e^3 \sqrt {d+e x}}{64 b^4 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {35 e^2 (d+e x)^{3/2}}{96 b^3 (a+b x) \sqrt {a^2+2 a b x+b^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^(7/2)/(a^2 + 2*a*b*x + b^2*x^2)^(5/2),x]

[Out]

(-35*e^3*Sqrt[d + e*x])/(64*b^4*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) - (35*e^2*(d + e*x)^(3/2))/(96*b^3*(a + b*x)*Sq
rt[a^2 + 2*a*b*x + b^2*x^2]) - (7*e*(d + e*x)^(5/2))/(24*b^2*(a + b*x)^2*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) - (d +
 e*x)^(7/2)/(4*b*(a + b*x)^3*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) - (35*e^4*(a + b*x)*ArcTanh[(Sqrt[b]*Sqrt[d + e*x]
)/Sqrt[b*d - a*e]])/(64*b^(9/2)*Sqrt[b*d - a*e]*Sqrt[a^2 + 2*a*b*x + b^2*x^2])

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + 1))), x] - Dist[d*(n/(b*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d, n
}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && GtQ[n, 0]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 660

Int[((d_.) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(a + b*x + c*x^2)^Fra
cPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(b/2 + c*x)^(2*p), x], x] /; FreeQ[{a, b,
 c, d, e, m, p}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p] && NeQ[2*c*d - b*e, 0]

Rubi steps

\begin {align*} \int \frac {(d+e x)^{7/2}}{\left (a^2+2 a b x+b^2 x^2\right )^{5/2}} \, dx &=\frac {\left (b^4 \left (a b+b^2 x\right )\right ) \int \frac {(d+e x)^{7/2}}{\left (a b+b^2 x\right )^5} \, dx}{\sqrt {a^2+2 a b x+b^2 x^2}}\\ &=-\frac {(d+e x)^{7/2}}{4 b (a+b x)^3 \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {\left (7 b^2 e \left (a b+b^2 x\right )\right ) \int \frac {(d+e x)^{5/2}}{\left (a b+b^2 x\right )^4} \, dx}{8 \sqrt {a^2+2 a b x+b^2 x^2}}\\ &=-\frac {7 e (d+e x)^{5/2}}{24 b^2 (a+b x)^2 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {(d+e x)^{7/2}}{4 b (a+b x)^3 \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {\left (35 e^2 \left (a b+b^2 x\right )\right ) \int \frac {(d+e x)^{3/2}}{\left (a b+b^2 x\right )^3} \, dx}{48 \sqrt {a^2+2 a b x+b^2 x^2}}\\ &=-\frac {35 e^2 (d+e x)^{3/2}}{96 b^3 (a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {7 e (d+e x)^{5/2}}{24 b^2 (a+b x)^2 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {(d+e x)^{7/2}}{4 b (a+b x)^3 \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {\left (35 e^3 \left (a b+b^2 x\right )\right ) \int \frac {\sqrt {d+e x}}{\left (a b+b^2 x\right )^2} \, dx}{64 b^2 \sqrt {a^2+2 a b x+b^2 x^2}}\\ &=-\frac {35 e^3 \sqrt {d+e x}}{64 b^4 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {35 e^2 (d+e x)^{3/2}}{96 b^3 (a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {7 e (d+e x)^{5/2}}{24 b^2 (a+b x)^2 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {(d+e x)^{7/2}}{4 b (a+b x)^3 \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {\left (35 e^4 \left (a b+b^2 x\right )\right ) \int \frac {1}{\left (a b+b^2 x\right ) \sqrt {d+e x}} \, dx}{128 b^4 \sqrt {a^2+2 a b x+b^2 x^2}}\\ &=-\frac {35 e^3 \sqrt {d+e x}}{64 b^4 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {35 e^2 (d+e x)^{3/2}}{96 b^3 (a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {7 e (d+e x)^{5/2}}{24 b^2 (a+b x)^2 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {(d+e x)^{7/2}}{4 b (a+b x)^3 \sqrt {a^2+2 a b x+b^2 x^2}}+\frac {\left (35 e^3 \left (a b+b^2 x\right )\right ) \text {Subst}\left (\int \frac {1}{a b-\frac {b^2 d}{e}+\frac {b^2 x^2}{e}} \, dx,x,\sqrt {d+e x}\right )}{64 b^4 \sqrt {a^2+2 a b x+b^2 x^2}}\\ &=-\frac {35 e^3 \sqrt {d+e x}}{64 b^4 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {35 e^2 (d+e x)^{3/2}}{96 b^3 (a+b x) \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {7 e (d+e x)^{5/2}}{24 b^2 (a+b x)^2 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {(d+e x)^{7/2}}{4 b (a+b x)^3 \sqrt {a^2+2 a b x+b^2 x^2}}-\frac {35 e^4 (a+b x) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{64 b^{9/2} \sqrt {b d-a e} \sqrt {a^2+2 a b x+b^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.85, size = 185, normalized size = 0.74 \begin {gather*} \frac {e^4 (a+b x)^5 \left (-\frac {\sqrt {b} \sqrt {d+e x} \left (105 a^3 e^3+35 a^2 b e^2 (2 d+11 e x)+7 a b^2 e \left (8 d^2+36 d e x+73 e^2 x^2\right )+b^3 \left (48 d^3+200 d^2 e x+326 d e^2 x^2+279 e^3 x^3\right )\right )}{e^4 (a+b x)^4}+\frac {105 \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {-b d+a e}}\right )}{\sqrt {-b d+a e}}\right )}{192 b^{9/2} \left ((a+b x)^2\right )^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^(7/2)/(a^2 + 2*a*b*x + b^2*x^2)^(5/2),x]

[Out]

(e^4*(a + b*x)^5*(-((Sqrt[b]*Sqrt[d + e*x]*(105*a^3*e^3 + 35*a^2*b*e^2*(2*d + 11*e*x) + 7*a*b^2*e*(8*d^2 + 36*
d*e*x + 73*e^2*x^2) + b^3*(48*d^3 + 200*d^2*e*x + 326*d*e^2*x^2 + 279*e^3*x^3)))/(e^4*(a + b*x)^4)) + (105*Arc
Tan[(Sqrt[b]*Sqrt[d + e*x])/Sqrt[-(b*d) + a*e]])/Sqrt[-(b*d) + a*e]))/(192*b^(9/2)*((a + b*x)^2)^(5/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(466\) vs. \(2(167)=334\).
time = 0.70, size = 467, normalized size = 1.87

method result size
default \(-\frac {\left (-105 \arctan \left (\frac {b \sqrt {e x +d}}{\sqrt {b \left (a e -b d \right )}}\right ) b^{4} e^{4} x^{4}-420 \arctan \left (\frac {b \sqrt {e x +d}}{\sqrt {b \left (a e -b d \right )}}\right ) a \,b^{3} e^{4} x^{3}+279 \sqrt {b \left (a e -b d \right )}\, \left (e x +d \right )^{\frac {7}{2}} b^{3}-630 \arctan \left (\frac {b \sqrt {e x +d}}{\sqrt {b \left (a e -b d \right )}}\right ) a^{2} b^{2} e^{4} x^{2}+511 \sqrt {b \left (a e -b d \right )}\, \left (e x +d \right )^{\frac {5}{2}} a \,b^{2} e -511 \sqrt {b \left (a e -b d \right )}\, \left (e x +d \right )^{\frac {5}{2}} b^{3} d -420 \arctan \left (\frac {b \sqrt {e x +d}}{\sqrt {b \left (a e -b d \right )}}\right ) a^{3} b \,e^{4} x +385 \sqrt {b \left (a e -b d \right )}\, \left (e x +d \right )^{\frac {3}{2}} a^{2} b \,e^{2}-770 \sqrt {b \left (a e -b d \right )}\, \left (e x +d \right )^{\frac {3}{2}} a \,b^{2} d e +385 \sqrt {b \left (a e -b d \right )}\, \left (e x +d \right )^{\frac {3}{2}} b^{3} d^{2}-105 \arctan \left (\frac {b \sqrt {e x +d}}{\sqrt {b \left (a e -b d \right )}}\right ) a^{4} e^{4}+105 \sqrt {b \left (a e -b d \right )}\, \sqrt {e x +d}\, a^{3} e^{3}-315 \sqrt {b \left (a e -b d \right )}\, \sqrt {e x +d}\, a^{2} b d \,e^{2}+315 \sqrt {b \left (a e -b d \right )}\, \sqrt {e x +d}\, a \,b^{2} d^{2} e -105 \sqrt {b \left (a e -b d \right )}\, \sqrt {e x +d}\, b^{3} d^{3}\right ) \left (b x +a \right )}{192 \sqrt {b \left (a e -b d \right )}\, b^{4} \left (\left (b x +a \right )^{2}\right )^{\frac {5}{2}}}\) \(467\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(7/2)/(b^2*x^2+2*a*b*x+a^2)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/192*(-105*arctan(b*(e*x+d)^(1/2)/(b*(a*e-b*d))^(1/2))*b^4*e^4*x^4-420*arctan(b*(e*x+d)^(1/2)/(b*(a*e-b*d))^
(1/2))*a*b^3*e^4*x^3+279*(b*(a*e-b*d))^(1/2)*(e*x+d)^(7/2)*b^3-630*arctan(b*(e*x+d)^(1/2)/(b*(a*e-b*d))^(1/2))
*a^2*b^2*e^4*x^2+511*(b*(a*e-b*d))^(1/2)*(e*x+d)^(5/2)*a*b^2*e-511*(b*(a*e-b*d))^(1/2)*(e*x+d)^(5/2)*b^3*d-420
*arctan(b*(e*x+d)^(1/2)/(b*(a*e-b*d))^(1/2))*a^3*b*e^4*x+385*(b*(a*e-b*d))^(1/2)*(e*x+d)^(3/2)*a^2*b*e^2-770*(
b*(a*e-b*d))^(1/2)*(e*x+d)^(3/2)*a*b^2*d*e+385*(b*(a*e-b*d))^(1/2)*(e*x+d)^(3/2)*b^3*d^2-105*arctan(b*(e*x+d)^
(1/2)/(b*(a*e-b*d))^(1/2))*a^4*e^4+105*(b*(a*e-b*d))^(1/2)*(e*x+d)^(1/2)*a^3*e^3-315*(b*(a*e-b*d))^(1/2)*(e*x+
d)^(1/2)*a^2*b*d*e^2+315*(b*(a*e-b*d))^(1/2)*(e*x+d)^(1/2)*a*b^2*d^2*e-105*(b*(a*e-b*d))^(1/2)*(e*x+d)^(1/2)*b
^3*d^3)*(b*x+a)/(b*(a*e-b*d))^(1/2)/b^4/((b*x+a)^2)^(5/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(7/2)/(b^2*x^2+2*a*b*x+a^2)^(5/2),x, algorithm="maxima")

[Out]

integrate((x*e + d)^(7/2)/(b^2*x^2 + 2*a*b*x + a^2)^(5/2), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 356 vs. \(2 (172) = 344\).
time = 2.43, size = 726, normalized size = 2.90 \begin {gather*} \left [\frac {105 \, {\left (b^{4} x^{4} + 4 \, a b^{3} x^{3} + 6 \, a^{2} b^{2} x^{2} + 4 \, a^{3} b x + a^{4}\right )} \sqrt {b^{2} d - a b e} e^{4} \log \left (\frac {2 \, b d + {\left (b x - a\right )} e - 2 \, \sqrt {b^{2} d - a b e} \sqrt {x e + d}}{b x + a}\right ) - 2 \, {\left (48 \, b^{5} d^{4} - {\left (279 \, a b^{4} x^{3} + 511 \, a^{2} b^{3} x^{2} + 385 \, a^{3} b^{2} x + 105 \, a^{4} b\right )} e^{4} + {\left (279 \, b^{5} d x^{3} + 185 \, a b^{4} d x^{2} + 133 \, a^{2} b^{3} d x + 35 \, a^{3} b^{2} d\right )} e^{3} + 2 \, {\left (163 \, b^{5} d^{2} x^{2} + 26 \, a b^{4} d^{2} x + 7 \, a^{2} b^{3} d^{2}\right )} e^{2} + 8 \, {\left (25 \, b^{5} d^{3} x + a b^{4} d^{3}\right )} e\right )} \sqrt {x e + d}}{384 \, {\left (b^{10} d x^{4} + 4 \, a b^{9} d x^{3} + 6 \, a^{2} b^{8} d x^{2} + 4 \, a^{3} b^{7} d x + a^{4} b^{6} d - {\left (a b^{9} x^{4} + 4 \, a^{2} b^{8} x^{3} + 6 \, a^{3} b^{7} x^{2} + 4 \, a^{4} b^{6} x + a^{5} b^{5}\right )} e\right )}}, \frac {105 \, {\left (b^{4} x^{4} + 4 \, a b^{3} x^{3} + 6 \, a^{2} b^{2} x^{2} + 4 \, a^{3} b x + a^{4}\right )} \sqrt {-b^{2} d + a b e} \arctan \left (\frac {\sqrt {-b^{2} d + a b e} \sqrt {x e + d}}{b x e + b d}\right ) e^{4} - {\left (48 \, b^{5} d^{4} - {\left (279 \, a b^{4} x^{3} + 511 \, a^{2} b^{3} x^{2} + 385 \, a^{3} b^{2} x + 105 \, a^{4} b\right )} e^{4} + {\left (279 \, b^{5} d x^{3} + 185 \, a b^{4} d x^{2} + 133 \, a^{2} b^{3} d x + 35 \, a^{3} b^{2} d\right )} e^{3} + 2 \, {\left (163 \, b^{5} d^{2} x^{2} + 26 \, a b^{4} d^{2} x + 7 \, a^{2} b^{3} d^{2}\right )} e^{2} + 8 \, {\left (25 \, b^{5} d^{3} x + a b^{4} d^{3}\right )} e\right )} \sqrt {x e + d}}{192 \, {\left (b^{10} d x^{4} + 4 \, a b^{9} d x^{3} + 6 \, a^{2} b^{8} d x^{2} + 4 \, a^{3} b^{7} d x + a^{4} b^{6} d - {\left (a b^{9} x^{4} + 4 \, a^{2} b^{8} x^{3} + 6 \, a^{3} b^{7} x^{2} + 4 \, a^{4} b^{6} x + a^{5} b^{5}\right )} e\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(7/2)/(b^2*x^2+2*a*b*x+a^2)^(5/2),x, algorithm="fricas")

[Out]

[1/384*(105*(b^4*x^4 + 4*a*b^3*x^3 + 6*a^2*b^2*x^2 + 4*a^3*b*x + a^4)*sqrt(b^2*d - a*b*e)*e^4*log((2*b*d + (b*
x - a)*e - 2*sqrt(b^2*d - a*b*e)*sqrt(x*e + d))/(b*x + a)) - 2*(48*b^5*d^4 - (279*a*b^4*x^3 + 511*a^2*b^3*x^2
+ 385*a^3*b^2*x + 105*a^4*b)*e^4 + (279*b^5*d*x^3 + 185*a*b^4*d*x^2 + 133*a^2*b^3*d*x + 35*a^3*b^2*d)*e^3 + 2*
(163*b^5*d^2*x^2 + 26*a*b^4*d^2*x + 7*a^2*b^3*d^2)*e^2 + 8*(25*b^5*d^3*x + a*b^4*d^3)*e)*sqrt(x*e + d))/(b^10*
d*x^4 + 4*a*b^9*d*x^3 + 6*a^2*b^8*d*x^2 + 4*a^3*b^7*d*x + a^4*b^6*d - (a*b^9*x^4 + 4*a^2*b^8*x^3 + 6*a^3*b^7*x
^2 + 4*a^4*b^6*x + a^5*b^5)*e), 1/192*(105*(b^4*x^4 + 4*a*b^3*x^3 + 6*a^2*b^2*x^2 + 4*a^3*b*x + a^4)*sqrt(-b^2
*d + a*b*e)*arctan(sqrt(-b^2*d + a*b*e)*sqrt(x*e + d)/(b*x*e + b*d))*e^4 - (48*b^5*d^4 - (279*a*b^4*x^3 + 511*
a^2*b^3*x^2 + 385*a^3*b^2*x + 105*a^4*b)*e^4 + (279*b^5*d*x^3 + 185*a*b^4*d*x^2 + 133*a^2*b^3*d*x + 35*a^3*b^2
*d)*e^3 + 2*(163*b^5*d^2*x^2 + 26*a*b^4*d^2*x + 7*a^2*b^3*d^2)*e^2 + 8*(25*b^5*d^3*x + a*b^4*d^3)*e)*sqrt(x*e
+ d))/(b^10*d*x^4 + 4*a*b^9*d*x^3 + 6*a^2*b^8*d*x^2 + 4*a^3*b^7*d*x + a^4*b^6*d - (a*b^9*x^4 + 4*a^2*b^8*x^3 +
 6*a^3*b^7*x^2 + 4*a^4*b^6*x + a^5*b^5)*e)]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(7/2)/(b**2*x**2+2*a*b*x+a**2)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]
time = 0.85, size = 255, normalized size = 1.02 \begin {gather*} \frac {35 \, \arctan \left (\frac {\sqrt {x e + d} b}{\sqrt {-b^{2} d + a b e}}\right ) e^{4}}{64 \, \sqrt {-b^{2} d + a b e} b^{4} \mathrm {sgn}\left (b x + a\right )} - \frac {279 \, {\left (x e + d\right )}^{\frac {7}{2}} b^{3} e^{4} - 511 \, {\left (x e + d\right )}^{\frac {5}{2}} b^{3} d e^{4} + 385 \, {\left (x e + d\right )}^{\frac {3}{2}} b^{3} d^{2} e^{4} - 105 \, \sqrt {x e + d} b^{3} d^{3} e^{4} + 511 \, {\left (x e + d\right )}^{\frac {5}{2}} a b^{2} e^{5} - 770 \, {\left (x e + d\right )}^{\frac {3}{2}} a b^{2} d e^{5} + 315 \, \sqrt {x e + d} a b^{2} d^{2} e^{5} + 385 \, {\left (x e + d\right )}^{\frac {3}{2}} a^{2} b e^{6} - 315 \, \sqrt {x e + d} a^{2} b d e^{6} + 105 \, \sqrt {x e + d} a^{3} e^{7}}{192 \, {\left ({\left (x e + d\right )} b - b d + a e\right )}^{4} b^{4} \mathrm {sgn}\left (b x + a\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(7/2)/(b^2*x^2+2*a*b*x+a^2)^(5/2),x, algorithm="giac")

[Out]

35/64*arctan(sqrt(x*e + d)*b/sqrt(-b^2*d + a*b*e))*e^4/(sqrt(-b^2*d + a*b*e)*b^4*sgn(b*x + a)) - 1/192*(279*(x
*e + d)^(7/2)*b^3*e^4 - 511*(x*e + d)^(5/2)*b^3*d*e^4 + 385*(x*e + d)^(3/2)*b^3*d^2*e^4 - 105*sqrt(x*e + d)*b^
3*d^3*e^4 + 511*(x*e + d)^(5/2)*a*b^2*e^5 - 770*(x*e + d)^(3/2)*a*b^2*d*e^5 + 315*sqrt(x*e + d)*a*b^2*d^2*e^5
+ 385*(x*e + d)^(3/2)*a^2*b*e^6 - 315*sqrt(x*e + d)*a^2*b*d*e^6 + 105*sqrt(x*e + d)*a^3*e^7)/(((x*e + d)*b - b
*d + a*e)^4*b^4*sgn(b*x + a))

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (d+e\,x\right )}^{7/2}}{{\left (a^2+2\,a\,b\,x+b^2\,x^2\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^(7/2)/(a^2 + b^2*x^2 + 2*a*b*x)^(5/2),x)

[Out]

int((d + e*x)^(7/2)/(a^2 + b^2*x^2 + 2*a*b*x)^(5/2), x)

________________________________________________________________________________________